
Progressive Lossless Compression
Of Arbitrary Simplicial Complexes

Pierre-Marie Gandoin Olivier Devillers∗

quantized 3×5 bits,1% of raw data; 3×6 bits, 3%; 3×12 bits, 20%;
lossless, 25 bits/vertex

3×6 bits, 7%; 3×10 bits, 14%; 3×6 bits, 3%; 3×12 bits, 14%; 3×5 bits, 2%; 3×6 bits, 4%; 3×8 bits, 13%;3×12 bits, 25%;
lossless, 15 bits/vertex lossless, 18 bits/vertex lossless, 26 bits/vertex

Figure 1: Steps in the progressive decompression of various models.
Abstract
Efficient algorithms for compressing geometric data have been
widely developed in the recent years, but they are mainly de-
signed for closed polyhedral surfaces which are manifold or “nearly
manifold”. We propose here a progressive geometry compression
scheme which can handle manifold models as well as “triangle
soups” and 3D tetrahedral meshes. The method is lossless when the
decompression is complete which is extremely important in some
domains such as medical or finite element.

While most existing methods enumerate the vertices of the mesh
in an order depending on the connectivity, we use a kd-tree tech-
nique [Devillers and Gandoin 2000] which does not depend on the
connectivity. Then we compute a compatible sequence of meshes
which can be encoded using edge expansion [Hoppe et al. 1993]
and vertex split [Popović and Hoppe 1997].

The main contributions of this paper are: the idea of using the
kd-tree encoding of the geometry to drive the construction of a se-
quence of meshes, an improved coding of the edge expansion and
vertex split since the vertices to split are implicitly defined, a pre-
diction scheme which reduces the code for simplices incident to the
split vertex, and a new generalization of the edge expansion opera-
tion to tetrahedral meshes.

Keywords: Mesh Compression, Non manifold Meshes, Coding,
Progressivity, Interactivity

∗INRIA Geometrica, BP93, 06902 Sophia-Antipolis, France.
Pierre-Marie.Gandoin—Olivier.Devillers@sophia.inria.fr

1 INTRODUCTION

Compressing data manipulated by computers has always been, and
stays, a crucial necessity since the amount of data grows as fast
as the size of computer storage. After text, sound and images, the
compression of geometric structures is a new challenge both for
storage and for visualization and transmission over the network.
For this latter application, we would like to design compression
schemes that are progressive, where the information is organized
such that a coarse model can be visualized before the transmission
is complete.

Most often, a geometric structure consists of a set of points, often
referred to as the geometry (or vertex positions) and the connectiv-
ity (or topology), composed of the adjacency relations between the
vertices. The description is sometimes also completed by a list of
attributes (normals, colors, textures).

1.1 Related Work

1.1.1 Connectivity Driven Approach

The main difficulty in the design of a compression scheme is to
achieve good compression rates for both geometry and connectivity.
Regarding the single resolution (non progressive) geometry com-
pression, which dates back to an article by Deering in 1995 using
generalized triangle strips [Deering 1995], all the methods give pri-
ority to the connectivity coding. The common intuitive idea is to
describe a spanning tree of vertices and faces by reordering the ver-
tices according to a deterministic strategy to traverse the mesh. This
strategy constructs a sequence where each vertex is associated to a
label (Rossignac’s edge-breaker [1999]), or some other additional
information such as the degree of the vertex (Touma and Gotsman’s
algorithm [1998]), describing the way this vertex is connected to the
previous ones in the sequence. Thus, the order of enumeration of
the vertices is imposed by the connectivity and the geometric part
of the coder tries to get some additional gain, using differential cod-
ing or positions prediction: instead of being specified with absolute
coordinates, the new vertex position can be expressed relatively to

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail p rmissions@acm.orge .
© 2002 ACM 1-58113-521-1/02/0007 $5.00

372

its predecessors, using a difference vector or some linear predictor.
Most of the single-rate compression methods [Deering 1995; Evans
et al. 1996; Taubin and Rossignac 1998; Gumhold and Strasser
1998; Touma and Gotsman 1998; Rossignac 1999; Rossignac and
Szymczak 1999; King and Rossignac 1999; Isenburg and Snoeyink
1999; Isenburg 2000; Li and Kuo 1998; Bajaj et al. 1999a; Bajaj
et al. 1999c; Gumhold et al. 1999; Alliez and Desbrun 2001b] fol-
low this framework and reach costs as low as 2 bits per vertex on
average for the most efficient connectivity coders.

Historically, progressive compression methods find their origin
in mesh simplification. The general idea is to create a decimation
sequence from the original mesh using some canonical operator
(vertex or face removal, edge collapse, vertex unification) yielding
a very coarse version of the mesh. Furthermore, this decimation
sequence is driven by a criterion optimizing the choice of the deci-
mated elements in order to maximize the rate/distortion ratio. Thus
if the coarse model is transmitted, followed by a sequence of re-
finements describing finer models, the client, by truncating the bit
stream at any point, is guaranteed to obtain the best approximation
of the original object. Unfortunately, such a hierarchical organiza-
tion often leads to a significant overhead cost in bit size. This is why
simplification algorithms were not initially used as compression
methods (an overview of these algorithms can be found in the very
complete survey of Garland and Heckbert [1997]). The first meth-
ods for progressive geometric compression are extensions of single-
rate methods [Taubin et al. 1998; Bajaj et al. 1999b]. By grouping
the refinement operations in batches, some techniques yield results
relatively close to those of single resolution methods. For instance,
the algorithm proposed by Pajarola and Rossignac [2000a; 2000b]
uses vertex bit-marking instead of the costly explicit coding of the
vertex indices. The two most efficient methods to our knowledge
are based on the vertex removal operator, followed by a canonical
retriangulation allowing the decoder to identify the patches result-
ing from the deletions. The first one is due to Cohen-Or, Levin
and Remez [1999], and uses triangle coloring to code the patches.
This technique results in connectivity costs of around 6 bits per
vertex on usual models, but the strip retriangulation produces in-
termediate meshes whose visual quality is unsatisfactory. To avoid
this problem, Alliez and Desbrun [2001a] propose to preserve the
regularity of the mesh during the simplification by maximizing the
number of degree 6 vertices. To this aim, the algorithm alternates
the main decimation phase with a regularization phase where de-
gree 3 vertices are removed. Besides the better quality of the tran-
sitional meshes, this method compresses the connectivity of usual
meshes (nearly manifold) down to 3.7 bits per vertex on average.
As in single-rate methods, the geometry coding follows from the
connectivity coding and is generally based on a linear local predic-
tion. Some of these methods can handle non manifold meshes
of small genus, either by coding explicitly the changes in topology
or by stitching manifold patches [Guéziec et al. 1999], which gen-
erally induces important overcosts. It is also important to note
that much lower bit-rates can be reached when the algorithm begins
with a complete remeshing of the model to generate regularity and
uniformity [Khodakovsky et al. 2000; Karni and Gotsman 2000],
which is not admissible in many practical applications where data
loss is prohibited.

1.1.2 Geometry Driven Approach

Schmalstieg and Schaufler [1997], following Rossignac and Bor-
rel [1993] have tackled the problem from a completely different
point of view. They group vertices in clusters on a geometric ba-
sis and merge them to construct different levels of details. How-
ever, the main goal in their approach is to obtain continuity between
coarse to fine approximations of the object, and the achieved com-
pression ratios are not competitive with the current state of the art.
In a previous paper [Devillers and Gandoin 2000], we have adopted

a similar approach: observing that the geometry is, bitwise, the
most expensive part of a mesh, and that in many cases, the connec-
tivity can be automatically reconstructed from the vertex positions,
we designed an efficient, purely geometric coder, which constitutes
the starting point of our present work. The algorithm, valid in any
dimension, is based on a kd-tree decomposition by cell subdivision.
Given n 2D points with integer coordinates on b bits, the starting
cell is a rectangular bounding box of size 2b by 2b. The algorithm
starts by encoding the total number of points n on an arbitrary fixed
number of bits (32 for example). Then it starts the main loop, which
consists in subdividing the current cell in two halves along the hor-
izontal axis and then coding the number of points contained in one
of them (the left one for example) on an optimal number of bits: if
the parent cell contains p points, the number of points in the half-
cell, which can take the p + 1 values 0, 1, . . . , p, will be coded on
log2(p + 1) bits using arithmetic coding [Witten et al. 1987]. The
number of points contained in the second half-cell does not have to
be explicitly encoded since it can be deduced from the total number
and the number transmitted for the first half-cell, after which each
one of the two resulting cells is subdivided along the vertical axis
according to the same rule. The process, depicted in Figure 2, iter-
ates until there is no non-empty cell greater than 1 by 1. As shown
on Figure 2 (in yellow), the corresponding coding sequence con-
sists only of the numbers of points. The positions of these points
are hidden in the order of the output. As the algorithm progresses,
the cell size decreases and the transmitted data lead to a more accu-
rate localization. The worst case for the algorithm has been proven
to correspond to an uniform distribution of points in the bounding
box. In the latter case, the gain is equal to n (log2 n − 2.402) bits.
In practice, the method takes advantage of structured distributions
containing variations of local density, which yields generally much
better performances (see Section 2.5). The method works in any
dimension and in the sequel we will use it for points in dimension
3.

7 3 1 0 0

1 3

0

0 1 12

3
log8

32 bits 1.6
log3 . . .

2.3 1 1 1 2 12.3
log5

2
log4

1
log2

7 3 1 0 0 1 3 0 0 1 2 1

Figure 2: The geometry coder on a two-dimensional example.

Regarding the compression of the connectivity, we propose two
alternatives. The first one is to reconstruct the connectivity from
the geometry, which is reasonable in special cases such as terrain
models or densely sampled objects. The second possibility is an
edge-based connectivity coder, but the proposed technique handles
only edges and not higher dimensional faces. It is rather expensive
and spend more than 12 bits per vertex for a triangular mesh, these
bad performances restrict this technique to very specific applica-
tions for sparse meshes with few edges.

1.2 Overview

In this article, we present a new algorithm for connectivity coding,
compatible with the kd-tree geometry coder described above. The
general idea is to first run the geometry coder splitting the cells
without taking the connectivity into account, then, when the full
precision is reached, the connectivity of the model can be added and
we can run the splitting process backwards, merging the cells and
deducing connectivity between the cells of coarser models (Sec-
tion 2.1). Connectivity changes between successive models can be
encoded by symbols inserted between the numbers of the code of
Figure 2.

373

The changes of connectivity can be described by two well-known
decimation operators originally used in a surface simplification
context: edge expansion and vertex split. The edge expansion gen-
erates short codes in locally manifold cases, while the more expen-
sive (but more general) vertex split operator allows us to treat gen-
eral models and even unconnected 3D objects like “triangle soups”.
Compared to classical use of these two operators, we get a cheap
description for two reasons: first, in our case, the vertex to be split
is implicitly defined and does not need to be referenced explic-
itly; the second reason is the use of prediction techniques which
improve the compression of the connectivity by about 50% (Sec-
tion 2.4). We get bit-rates of 8 bits per vertex for the connectivity in
the non manifold cases and bit-rates as low as 3 bits per vertex for
nearly manifold meshes usually handled by the geometric compres-
sion community. In the manifold case, we are competitive with the
most efficient published algorithms [Pajarola and Rossignac 2000b;
Cohen-Or et al. 1999; Alliez and Desbrun 2001a], while we reach a
continuity in the bit-rate with respect to the manifold/non manifold
axis using a unified encoder (Section 2.5).

Furthermore, we show how the method can be extended to vol-
umetric meshes. To this aim, we define a new operator for edge
expansion and propose an efficient encoding for it. This approach
improves the best progressive method reported for tetrahedral com-
pression [Pajarola et al. 1999] by 25% (Section 3). We finally dis-
cuss the possibility to adapt the method to polygonal meshes and
conclude in Section 4.

2 THE CONNECTIVITY CODER

2.1 Principle Of The Algorithm

Starting from the principle described in Section 1.1.2, the key idea
consists in defining a connectivity between the cells of the kd-tree
to approximate the connectivity of the original 3D model. Then
the geometric code is enriched: to the number of vertices in the
first half of a split cell is appended a code which describes how
the connectivity with other cells evolves during the split. There are
now two different problems: on the one hand, we have to associate
connectivity to coarse levels where the cells contain several points,
on the other hand, the way the connectivity evolves has to be coded
efficiently.

Let our model be composed of a point set and a set of simplices
(edges and triangles). If we consider some intermediate step of the
construction of the kd-tree, we embed the connectivity of the model
on the set of cells by creating edges and triangles between the cells
if they exist in the original model between the points contained by
these cells. This sequence of connectivities for the sequence of sets
of cells is constructed in the fine to coarse direction, going back
through the subdivision process up to the biggest cell (the object’s
bounding box), using cell merging. After each merge, the informa-
tion required by the decoder to restore the original connectivity is
encoded.

When two cells are merged, they are replaced by a parent cell.
Moreover, each cell is identified to its center-point, representative
of all vertices contained in the cell. Therefore, merging two cells
is equivalent to unifying the two vertices respectively representing
them. Accordingly, in the following, we will use tools and vocab-
ulary originating from progressive mesh simplification. Basically,
the vertex merging is performed by the two following decimating
operators:
• edge collapse, originally defined by Hoppe et al. [1993] and
widely used in surface simplification (but also for compression pur-
poses by Pajarola and Rossignac [2000a; 2000b]), will be used to
merge two adjacent cells under some hypotheses. The two end-
points of the edge are merged, which leads to the deletion of the two
adjacent triangles (only one if the edge belongs to a mesh boundary)

Figure 3: The edge collapse.

Figure 4: The vertex unification.

degenerating in flat triangles (Figure 3).
• vertex unification, as defined by Popović and Hoppe [1997], is a
much more general operation that will allow us to merge any two
cells even if they are not adjacent in the current connectivity; the
result is non manifold in general (Figure 4).

Each of these operators has a reverse operation: the edge expan-
sion and the vertex split, and their efficient coding will be described
in detail in Section 2.2.

In the surface simplification literature discussed previously, the
algorithm usually has complete freedom to choose the mesh ele-
ments on which the decimating operation is applied. This has two
main consequences on the methods. On the one hand, it is possible
to optimize the decimation in order to best approximate the orig-
inal surface as long as possible. Thus to minimize the geometric
distortion, a priority queue containing the mesh components is dy-
namically maintained, and at each decimation, the item minimizing
a proximity criterion to the original mesh (or sometimes to the pre-
vious version of the mesh) is chosen. On the other hand, in order to
let the decoder know which component have been deleted and must
be restored, an additional code describing the index of the compo-
nent among the whole current set must be output.

In our case, on the contrary, the edge to be collapsed or the ver-
tices to be unified are implicitly specified by the subdivision order
of the geometric coder. The decoding algorithm uses this implicit
definition and the cost of specifying the vertices to apply the op-
erator is avoided. The connectivity coder simply generates a sym-
bol identifying which of the two operators has been used, followed
by the parameters detailing the way this operator has modified the
connectivity of the current set of cells. The next section shows how
these parameters can be efficiently encoded.

2.2 Coding Of The Decimation Operators

2.2.1 Edge Collapse

The edge collapse operator is very inexpensive in terms of coding,
but can be applied only in a quite restrictive context: not only the
vertices to merge have to be adjacent, but also the neighborhood of
the contracted edge must be manifold and orientable. Under these
hypotheses, an edge collapse results in the loss of the two adjacent
faces, and the necessary information to code the reverse operation
— the edge expansion — consists of the indices of two edges (V N2

and V N7 in Figure 5) among the edges incident to the merged ver-
tex V (V N1 to V N10). Actually, since the neighborhood of V is
manifold and orientable, the two edges specified unambiguously
split the adjacent simplices in two subsets, one of which will be
attached to V1, the other to V2.

If the merged vertex has a degree d, the description of the two
edges to be expanded into triangles costs log2

(

d

2

)

. For an average
degree equal to 6, and with arithmetic coding, this leads to a code

374

size smaller than 4 bits. However, in the context of the cell subdivi-
sion, an additional bit is necessary to complete the description. In
fact, when a cell is halved, its center-point is split into two vertices
whose positions are fixed to the centers of the sub-cells. Conse-
quently, the decoder needs to know which vertex is connected to
the red simplices (or equivalently, which one is connected to the
blue simplices, see Figure 5).

V

V1

V2

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10
N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

Figure 5: The edge expansion.

In Section 2.4, we will see how simple prediction techniques for
the two edges expanded into triangles can result in edge collapse
coding using less than 3 bits per vertex on “nearly manifold” and
“regular enough” meshes.

2.2.2 Vertex Unification

When the vertices to be merged are not adjacent, or when their
neighborhood possesses a complex topology, a more general op-
erator is used: the vertex unification, introduced by Popović and
Hoppe [1997] in Progressive Simplicial Complexes, and whose re-
verse operation is called generalized vertex split. Using this op-
erator allows us to simplify — but also, in the framework of this
article, to efficiently compress — any simplicial complex (i.e. any
set containing simplices of dimension 0 (points), 1 (edges), 2 (trian-
gles), 3 (tetrahedra), and so on), which is much more general than
the connected manifold case usually handled by previous geometric
compression methods.

The counterpart of this genericity is that without careful coding,
the description of the generalized vertex split can be extremely ex-
pensive. Indeed, the principle is to exhaustively detail the evolution
of the simplices incident to the vertex V to be split. More precisely,
when V1 and V2 are unified into V , any simplex S incident to V1

or V2 is replaced by S′ = (S \ {V1, V2}) ∪ V (in the case where
S′ is obtained several times, only one occurrence remains). Con-
sequently, the coding sequence associated to the unification must
provide the decoder with the information required to reconstruct
the original simplex set. In order to do so, each simplex S ′ incident
to V receives a symbol from 1 to 4 determining its evolution after
V has been split:
• code 1: S′ becomes S1 incident to V1;
• code 2: S′ becomes S2 incident to V2;
• code 3: S′ becomes S1 incident to V1 and S2 incident to V2;
• code 4: S′ becomes S1 incident to V1, S2 incident to V2, and S
of dimension dim(S′) + 1 incident to V1 and V2. (see Figure 6).

V

V

dim 1
split

dim 2
split

code 1

V1 V2

V1 V2

code 2

V1 V2

V1 V2

code 3

V1 V2

V1 V2

code 4

V1 V2

V1 V2

V V1 V2
V1 V2

dim 0

Figure 6: Examples of generalized vertex split.

If naively encoded, this description can lead to prohibitive costs
of about 30 bits. Popović and Hoppe propose to optimize the cod-
ing by two means. First, they observe that the simplex codes are
not independent. Their mutual interaction can be summarized by
the following two rules: i) if a simplex S has code c ∈ {1, 2}, all
the simplices adjacent to S with dimension dim(S) + 1 have code
c; ii) if a simplex S has code 3, none of the simplices adjacent to
S with dimension dim(S) + 1 have code 4. By coding the sim-
plices adjacent to a vertex to be split by ascending dimensions, and
applying these rules and their contrapositives, the cost is reduced
by 50% on average. The second optimization suggested by the au-
thors is related to entropy coding. Given a simplex S of dimension
d with possible codes c1 to ck, k ≤ 4 (some codes can be known
impossible accordingly to rules i) and ii)), the codes c1 to ck have
not the same probability. Therefore, a statistical array is filled dur-
ing the decimation process, then the sequence is reversed and the
final codes are optimally output: for each simplex, the probability
distribution corresponding to its dimension, its potential codes, and
its actual code, are sent to the arithmetic encoder. This yields a new
gain of about 50% which lowers the final cost down to 8 bits per
vertex for usual 3D objects.

2.3 Analysis And Features

The decimation algorithm starts from the set of separated vertices
with their original connectivity, and performs successive cell/vertex
merging according to the fine to coarse sequence of subdivisions
generated by the geometric coder, until one vertex representative of
the whole point set and centered in the bounding box is obtained.
In this section, we give an experimental analysis of the percentage
of vertex splits and edge expansions obtained in that context. Since
n − 1 decimation operations are necessary to completely decimate
a set of n points, the global cost of the connectivity coding in bits
per vertex is almost:

Cseparation + Ccollapse Pcollapse + Cunif Punif

where Cseparation is the size of the header specifying which re-
finement operator is used, Ccollapse and Cunif are the respective
costs of the refinement descriptions, Pcollapse and Punif are the
respective percentages of occurrences of the operators in the cod-
ing sequence. The performance of the algorithm thus depends on
Pcollapse and Punif ; Table 1 shows some statistics for typical mod-
els (the last row gives the size of the separation code arithmetically
encoded). In usual surface simplification methods where the deci-
mating items are explicitly specified, they are chosen to give prior-
ity to edge collapse on vertex unification; here, we do not have this
freedom, but we still observe that on nearly manifold models, the
edge collapse is quite predominant in the decimation process (up to
96% of the operations).

models number of edge vertex separation
vertices collapse unification cost

triceratops 2832 76.4% 23.6% 0.79 bit
blob 8033 90.9% 9.1% 0.44 bit

fandisk 6475 96.0% 4.0% 0.24 bit
bunny 35947 93.0% 7.0% 0.37 bit
horse 19851 92.4% 7.6% 0.39 bit

average 73138 92.2% 7.8% 0.39 bit

Table 1: Decimation operators percentages.

The cell subdivision principle that governs the algorithm makes
it intrinsically well suited to progressive visualization purposes. As
the decoding progresses, cell sizes decrease and the received data
allow us to localize the points with more accuracy, and simultane-
ously, to smooth the object by incorporating the new connectivity
information. Therefore it is possible to visualize the set of points at

375

any stage of the decoding, with smooth transitions between the suc-
cessive versions using geomorphs. Moreover, the precision over the
point coordinates is controlled since it is equal to half the current
cell size.

Besides progressivity, the advantage of the method is to pro-
vide advanced interactivity to the user. For instance, the geometric
coder does not impose an a priori quantization of the coordinates:
the server can compress the points on as many bits as necessary to
preserve the original floating point precision of the model, and the
client asks for refinement data until he/she considers the accuracy
sufficient for his/her needs. Furthermore, since the cells are struc-
tured in a kd-tree, it is possible, during decoding, to select one or
more subsets of the scene and to refine them selectively. Hence an
interactive navigation through a complex 3D scene is optimized in
terms of quantity of data transmitted.

Moreover, the connectivity coder can efficiently handle any sim-
plicial complex in dimension d (see Section 3 for the volumetric
meshes extension). In particular, it is important to note that any
geometric structure that can be described as a set of edges (i.e. 1-
dimensional simplices) is manageable by our algorithm. For in-
stance, this can provide a way to progressively encode polygo-
nal surface meshes (in this case however, a post-process phase is
needed to reconstruct the polygons by searching the edge loops).
Thus, the edge-based connectivity coder proposed in our previous
paper [Devillers and Gandoin 2000] appears as a particular case of
our method. Figure 7 gives an example of connectivity code in-
serted in the geometric code of Figure 2. The portion of code in
the figure starts with a geometric vertical split with 3 points on the
left, followed by a code of edge expansion and the indices of the
two incident edges (1 and 4) expanded in triangles; the three next
horizontal geometrical split (001) involves cells with only one point
and does not need connectivity code; the last code is a horizontal
geometrical split with 2 points above followed by a code of gener-
alized vertex split and the connectivity splitting code for the vertex,
the edges and the incident triangles, the simplices are colored on
the figure accordingly to their splitting code (due to compatibility
rules, only one triangle is really coded).

2 41 4 111 222

10

0

3
1003

1

2
3 4

5

edge expansion: 1, 4

generalized vertex split: 44
2

Figure 7: Geometry and connectivity coders.

2.4 Prediction

For the encoding of the edge expansion of vertex split, we have
consider all cases with the same probability, for example, in Fig-
ure 5 the 10 points Ni are considered as possible vertices of the
triangles incident to edge V1V2 with the same probability. If we
can compute more realistic probability, then the performance of the

arithmetic coding are improved, the most probable Ni get short en-
coding and the less probable larger one. In the end of this section,
we compute such probabilities.

Since the edge collapse operator is by far the most frequent (as
shown by Table 1), we focused on the optimization of its descrip-
tion. In the coding sequence, the description of connectivity fol-
lows that of geometry, so that when the decoder is about to read the
description of an edge expansion, it already knows the geometric
position of the vertex V to be split, those of the resulting vertices
V1 and V2, and those of the neighbors Ni (see Figure 5). The idea
is to exploit this geometric information in order to attempt to guess
the two edges having to be expanded into faces to recover the orig-
inal connectivity (the cut-edges). To do so, a score is assigned to
each incident edge according to some criterion (defined later), then
the scores are normalized and passed to the arithmetic coder; if the
prediction scheme is reliable, the actual edges to be expanded ob-
tain a high probability, and thus a short code. Among the numerous
criteria we have tested, two stand out by their efficiency and their
robustness. The first one is very simple and intuitive: the probabil-
ity for the edge V Ni to be one of the two cut-edges is defined as
a linear function of |d(Ni, V1) − d(Ni, V2)| (where d() is the Eu-
clidean distance). For the second predictor, an interpolating plane
of V , V1, V2 and Ni is first computed, then a Delaunay-like crite-
rion is applied to the projected points: the score of each edge V Ni

is inversely proportional to the radius of the circumscribed circle
of {V1, V2, Ni} (see Figure 8). By linearly combining these two
criteria, an average gain of up to 40% can be reached for the edge
collapse coding sequence. As for the additional bit assigning the
two edge subsets (white and blue edges in Figure 5) to the ver-
tices V1 and V2, the gain is even more spectacular since a simple
proximity criterion reduces the cost down to 0.2 bit per operation.
The prediction proceeds as follows: if B1 (resp. B2) denotes the
barycenter of the neighbors of V in the first (resp. second) sub-
set, the comparison of the expressions d(V1, B1) + d(V2, B2) and
d(V1, B2)+d(V2, B1) allows us to predict which subset is attached
to V1 and which one to V2, with an average reliability of 95% on
the models of Table 1.

VV1

V2

N7

N8

N1

N2

N3

N4

N5

N6

N9

N10

V
V1

V2

R3,4

R8,9

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

Figure 8: Delaunay (left) and proximity (right) criterions.

For the vertex unification, the same kind of proximity criterion
can be used to predict the code of the simplices. In our implemen-
tation, we choose to apply prediction schemes only for simplices
whose code is 1 or 2, which are much more frequent than codes 3
and 4. We deduce the probabilities for a simplex of barycenter R
to be attached to V1 (resp. V2) directly from the distance d(R, V1)
(resp. d(R, V2)) (see Figure 8). The probabilities are then passed
to the arithmetic coder and yields a gain of 10 to 20% on the sole
vertex unification coding sequence.

It must be noted that, as usually with prediction, the efficiency of
all these methods strongly depends on the regularity of the mesh.

2.5 Results

Table 2 presents some results of our algorithm compared to those
of Pajarola and Rossignac [2000b], Cohen-Or, Levin and Re-
mez [1999] and Alliez and Desbrun [2001a] (a row concerning the
Touma and Gotsman [1998] single-rate method has been added as
reference). For each model and each benchmarked algorithm, the

376

first line gives the connectivity cost and the second one the geom-
etry cost in bits per vertex. As shown by the last line, our method
reaches progressivity with less than 5% overhead compared to the
most efficient single resolution algorithms and compares well to
other multi-resolution techniques. Generally speaking, the perfor-
mance comparison between the various published works is made
very delicate owing to the disparity of the tested models, as well
as the disparity of quantizations on a given model. Since we have
not implemented all the methods, Table 2 uses the 3D objects ap-
pearing in the different articles. Regarding the quantization, all the
models have 12 bits coordinates, except the fandisk whose vertex
coordinates are coded on 10 bits.

models vertex T G P R C L R A D our
number 1998 2000 2000 2001 algo

triceratops 2832 2.2 7.4 5.8 5.9 6.0
20.0 21.0 20.4 25.5 19.2

blob 8033 1.7 5.9 7.6 4.3 4.1
20.0 21.0 19.7 20.6 20.1

fandisk 6475 1.1 6.8 ? 5.0 2.9
9.0 15.0 12.3 12.1

bunny 35947 ? 7.0 ? 4.0 3.1
16.0 15.4 14.8

horse 19851 2.3 ? 5.7 4.6 3.9
17.0 15.4 16.2 16.4

average 73138 2.0 7.1 5.8 4.4 3.5
16.5 16.9 17.0 16.3 15.7

total 18.5 24.0 22.8 20.7 19.2

Table 2: Results on manifold models in bits per vertex for connec-
tivity (number above) and geometry (number below).

As shown in Section 2.2.2, the vertex unification operator makes
our algorithm applicable to a much wider range of geometric struc-
tures than the manifold triangulated surfaces. Table 3 gathers
the results of our algorithm on 3D objects modeled with triangle
soups (these objects are freely available on the 3DCafe web site:
http://www.3dcafe.com/asp/meshes.asp). The connectivity and ge-
ometry bit-rates are separated as previously, and the vertex coordi-
nates have been quantized on 12 bits for all the models. Contrary to
the objects tested in Table 2, the edge collapse occurs barely during
the decimation process: it represents less than 5% of the operations.
As a result, the average bit-rate of the connectivity goes up to 8 bits
per vertex.

models vertex results models vertex results
number number

aqua05 16784 8.5 grass14 29224 7.5
16.4 18.8

maple01 45499 8.2 skeleton 6103 11.4
16.9 15.9

m tree1 17782 7.9 average 115392 8.2
16.0 17.1

Table 3: Results on triangle soups in bits per vertex for connectivity
(number above) and geometry (number below).

Figures 9 and 10 show the progressive decompression for a man-
ifold surface (the triceratops) and a triangle soup (the tree, pre-
sented in a global view and a zoomed in region). For the tricer-
atops, the size of the compressed data goes from 4% (for the first
low precision version) to 25% (for the final lossless version) of the
original data in their raw form (3 x 12 bits per vertex for the posi-
tions plus 3 x log2 n bits per triangle for the connectivity). As for
the tree, the compressed size spreads from 8% to 45% of the orig-
inal raw size. We also draw the average positionning error of the
vertices as the decompression evolves. Figures 1 and 12 show more
examples of progressive decompression.

size: 4% size: 7%
5 bits 6 bits

size: 11% size: 14%
7 bits 8 bits

size: 17% size: 25%
9 bits 12 bits

rate

error

10 20 100

1

2

3

4

5

6

0

Figure 9: Rate distorsion on the triceratops model.

3 VOLUMETRIC MESHES EXTENSION

Volumetric meshes have been extensively used in finite element for
years, and are also more and more widespread in volume visualiza-
tion. More specifically, tetrahedral meshes, which offer a direct and
flexible way to interpolate numerical values in any point in space,
have established themselves as the most natural and powerful tool
for volume representation.

Although the need for tetrahedral compression is clear (the con-
nectivity being by far more expensive than for surface meshes), rel-
atively few methods have been proposed up to now. Regarding the
progressive coding, the only article tackling the progressive tetra-
hedral mesh compression is due to Pajarola, Rossignac and Szym-
czak [1999], and uses an edge collapse operator applied to succes-
sive batches of independent edges. Besides the cost of the vertex
split description (the implant), an additional bit per vertex and per
batch is used to identify the vertices to be split. Thus the global
cost depends on the number of independent edges collapsed in each
batch. To avoid the appearance of non manifold regions during the
simplification process, some edge collapses are forbidden. As for
the compression of the vertex positions, the authors suggest to ex-
ploit the prediction techniques designed for triangular meshes.

3.1 Generalization Of The Decimation Operators

The generalization of the vertex unification operator described in
Section 2.2.2 is straightforward in any dimension. As a result, the
progressive geometry and connectivity coding algorithms we pro-
posed in the framework of triangular structures are easily applica-

377

size: 2% size: 5%
5 bits 6 bits

size: 7% size: 9%
7 bits 8 bits

size: 12% size: 20%
9 bits 12 bits

rate

error

10 20 100

1
2
3
4
5
6

0

Figure 10: Rate distorsion on the m tree1 model.

ble to any simplicial complex in dimension d. However, without a
low cost operator equivalent to the edge collapse described in Sec-
tion 2.2.1, the performances regarding the connectivity compres-
sion will not be competitive. More precisely, the average cost of
a vertex unification for tetrahedral meshes is 120 bits without op-
timization, and around 40 bits by applying the two rules stated in
Section 2.2.2 plus arithmetic coding.

We suggest here a decimation operator equivalent to the edge
collapse adapted to tetrahedral meshes. Similarly to the case of
polyhedral surfaces, we improve the coding of special vertex uni-
fications that do not create topological changes in their neighbor-
hood. More precisely, this 3D edge collapse can be used when the
reverse operation fulfills the following conditions:
• the vertex V to be split has a code 4 (i.e. the split is an edge ex-
pansion);
• the set of triangles incident to V having a code 4 (i.e. the tri-
angles generating a tetrahedron after the split) forms a manifold
surface M , and V is not on its boundary;
• the remaining edges (i.e. the edges adjacent to V that do not be-
long to M) have a code c ∈ {1, 2};
• M separates the set of code 1 edges from the set of code 2 edges
(see Figure 11).

When the conditions are satisfied, the piece of code that allows
to restore the neighborhoods of the vertices V1 and V2 before the
unification is composed of: i) the number of code 4 triangles adja-
cent to V ; ii) the indices of these triangles among the set of triangles
incident to V ; iii) the indices of the edges lying on the “first” side
of M . As shown in Section 2.4, the cost can be lowered with the
help of prediction techniques combined with arithmetic coding. On
average, the final cost of this 3D equivalent of the edge collapse is
about 20 bits.

code 1 edges

code 2 edges

(code 4 faces)
surface M

V

Figure 11: Good case for the 3D edge expansion.

3.2 Results

As in the coding of triangular structures, the global cost depends
essentially on the occurrence percentages of the two operators. For
the Delaunay tetrahedralization of 10, 000 points points uniformly
distributed in a sphere, the 3D edge collapse occurs in less than 45%
of the vertex merging; we thus reach a bit-rate of 34 bits per vertex
to encode the mesh connectivity and 35 bits per vertex for the ge-
ometry if the point coordinates are quantized on 16 bits. We obtain
a final compression rate of 15% if we compare with a direct storage
with 16 bits per coordinate and 4 × log2 n bits per tetrahedron.

These results can be compared with those obtained by Pajarola,
Rossignac and Szymczak [1999]for progressive tetrahedral com-
pression. For a random Delaunay tetrahedralization containing
10, 000 vertices, their edge collapse operator, whose functionalities
and coding are quite different from ours, yields a total cost around
45 bits per vertex for the connectivity (taking into account the base
mesh plus the refinement cost). Moreover, the progressivity is lim-
ited since the base mesh cannot be arbitrary small (it represents
about 1/4 of the total cost). The geometry coding is not addressed
in this article, just like in Yang, Mitra and Chiueh work [2000],
which tackle the progressive coding of tetrahedral meshes from a
rendering point of view.

We have also tested our algorithm on meshes coming from real
applications: for a mesh of a Falcon business jet, (courtesy of
Dassault-Aviation) with 10188 vertices and 54911 tetrahedra with
coordinates on 16 bits, we obtain 41% of edge collapses and a bit-
rate of 23 bits per vertex for the geometry and 25 bits per vertex for
the connectivity.

4 CONCLUSION AND FUTURE WORK

We have presented a new progressive connectivity coding algorithm
based on surface simplification techniques optimized for compres-
sion purposes. This work is built on the kd-tree geometric coder
[Devillers and Gandoin 2000], and as such, allows an efficient joint
compression of the positions and the connectivity of the mesh. Be-
sides the good compression rates, which are competitive with the
most efficient progressive methods, the algorithm has the advantage
of being applicable to any simplicial complex, including in partic-
ular non manifold triangulations and triangle soups. Furthermore,
the method can be extended to any dimension and yields in the case
of tetrahedral meshes a cost reduction of about 25% compared with
previous work.

Future work will address the extension of the algorithm to polyg-
onal meshes. Indeed, the method permits the compression of such
geometric structures by describing them as a set of edges, and by
reconstructing the polygons from this set by loop searching, but it
should be more efficient to define an edge collapse operator adapted
to polygons with a size greater than 3. Also, we think the compres-
sion ratios can be still improved, in particular by combining connec-
tivity and geometry prediction as the refinement process proceeds.

Acknowledgments: Thanks to Pierre Alliez, Alain Dervieux,
George Drettakis and Monique Teillaud for their help.

378

Blob

4 bits, 2% 5 bits, 4%

7 bits, 9% 12 bits, 21%, lossless

Aqua

3 bits 4 bits 5 bits 6 bits 7 bits 8 bits 12 bits
0.3% 0.9% 2% 4% 7% 10% 23%, lossless

Horse

3 bits, 0.1% 4 bits,0.4% 5 bits, 1% 6 bits, 3% 7 bits, 6% 12 bits, 17%, lossless

Figure 12: More examples of progressive decompression.

References
ALLIEZ, P., AND DESBRUN, M. 2001. Progressive compression for loss-

less transmission of triangle meshes. In SIGGRAPH 2001 Conference
Proc., 199–202.

ALLIEZ, P., AND DESBRUN, M. 2001. Valence-driven connectivity encod-
ing for 3d meshes. In Eurographics 2001 Conference Proc., 480–489.

BAJAJ, C., CUTCHIN, S., PASCUCCI, V., AND ZHUANG, G. 1999. Error
resilient streaming of compressed vrml. Tech. rep., University of Texas.

BAJAJ, C., PASCUCCI, V., AND ZHUANG, G. 1999. Progressive compres-
sion and transmission of arbitrary triangular meshes. In IEEE Visualiza-
tion 99 Conference Proc., 307–316.

BAJAJ, C., PASCUCCI, V., AND ZHUANG, G. 1999. Single resolution com-
pression of arbitrary triangular meshes with properties. Computational
Geometry : Theory and Applications, 247–296.

COHEN-OR, D., LEVIN, D., AND REMEZ, O. 1999. Progressive compres-
sion of arbitrary triangular meshes. In IEEE Visualization 99 Conference
Proc., 67–72.

DEERING, M. 1995. Geometry compression. In SIGGRAPH 95 Conference
Proc., 13–20.

DEVILLERS, O., AND GANDOIN, P.-M. 2000. Geometric compression for
interactive transmission. In IEEE Visualization 2000 Conference Proc.,
319–326.

EVANS, F., SKIENA, S., AND VARSHNEY, A. 1996. Optimizing triangle
strips for fast rendering. In IEEE Visualization 96 Conference Proc.,
319–326.

GUÉZIEC, A., BOSSEN, F., TAUBIN, G., AND SILVA, C. 1999. Efficient
compression of non-manifold polygonal meshes. Comput. Geom. Theory
Appl. 14, 137–166.

GUMHOLD, S., AND STRASSER, W. 1998. Real time compression of
triangle mesh connectivity. In SIGGRAPH 98 Conference Proc., 133–
140.

GUMHOLD, S., GUTHE, S., AND STRASSER, W. 1999. Tetrahedral mesh
compression with the cut-border machine. In IEEE Visualization 99 Con-
ference Proc., 91–98.

HECKBERT, P. S., AND GARLAND, M. 1997. Survey of polygonal surface
simplification algorithms. Tech. rep., Carnegie Mellon University.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUET-
ZLE, W. 1993. Mesh optimization. In SIGGRAPH 93 Conference Proc.,
19–26.

ISENBURG, M., AND SNOEYINK, J. 1999. Mesh collapse compression. In
Symposium on Computational Geometry, 419–420.

ISENBURG, M. 2000. Triangle fixer : Edge-based connectivity encoding.
In 16th European Workshop on Computational Geometry Proc.

KARNI, Z., AND GOTSMAN, C. 2000. Spectral compression of mesh
geometry. In SIGGRAPH 2000 Conference Proc., 279–286.

KHODAKOVSKY, A., SCHRÖDER, P., AND SWELDENS, W. 2000. Pro-
gressive geometry compression. In SIGGRAPH 2000 Conference Proc.,
271–278.

KING, D., AND ROSSIGNAC, J. 1999. Guaranteed 3.67v bit encoding
of planar triangle graphs. In Canadian Conference on Computational
Geometry Proc., 146–149.

LI, J., AND KUO, C.-C. J. 1998. A dual graph approach to 3d trian-
gular mesh compression. In IEEE International Conference on Image
Processing Proc.

PAJAROLA, R., AND ROSSIGNAC, J. 2000. Compressed progressive
meshes. IEEE Transactions on Visualization and Computer Graphics
6, 1 (January–March), 79–93.

PAJAROLA, R., AND ROSSIGNAC, J. 2000. Squeeze : Fast and progressive
decompression of triangle meshes. CGI 2000 Proc., 173–182.

PAJAROLA, R., ROSSIGNAC, J., AND SZYMCZAK, A. 1999. Implant
sprays : Compression of progressive tetrahedral mesh connectivity. In
IEEE Visualization 99 Conference Proc., 299–306.

POPOVIĆ, J., AND HOPPE, H. 1997. Progressive simplicial complexes. In
SIGGRAPH 97 Conference Proc., 217–224.

ROSSIGNAC, J., AND BORREL, P. 1993. Geometric Modeling in Computer
Graphics. Springer-Verlag, July, ch. Multi-Resolution 3D Approxima-
tions for Rendering Complex Scenes, 455–465.

ROSSIGNAC, J., AND SZYMCZAK, A. 1999. Wrap&zip : Linear decod-
ing of planar triangle graphs. Computational Geometry : Theory and
Applications, 119–135.

ROSSIGNAC, J. 1999. Edgebreaker : Connectivity compression for triangle
meshes. IEEE Transactions on Visualization and Computer Graphics,
47–61.

SCHMALSTIEG, D., AND SCHAUFLER, G. 1997. Smooth levels of detail.
In IEEE Virtual Reality Annual International Symposium, 12–19.

TAUBIN, G., AND ROSSIGNAC, J. 1998. Geometric compression through
topological surgery. ACM Transactions on Graphics 17, 2, 84–115.

TAUBIN, G., GUÉZIEC, A., HORN, W., AND LAZARUS, F. 1998. Pro-
gressive forest split compression. In SIGGRAPH 98 Conference Proc.,
123–132.

TOUMA, C., AND GOTSMAN, C. 1998. Triangle mesh compression. In
Graphics Interface 98 Conference Proc., 26–34.

WITTEN, I., NEAL, R., AND CLEARY, J. 1987. Arithmetic coding for data
compression. Communications of the ACM 30, 6, 520–540.

YANG, C., MITRA, T., AND CHIUEH, T. 2000. On-the-fly rendering of
losslessly compressed irregular volume data. In 11th IEEE Visualization
Conference, 329–336.

379

